\(\int (a+a \cos (c+d x))^{3/2} (A+B \cos (c+d x)) \, dx\) [85]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [A] (verified)
   Fricas [A] (verification not implemented)
   Sympy [F]
   Maxima [A] (verification not implemented)
   Giac [A] (verification not implemented)
   Mupad [F(-1)]

Optimal result

Integrand size = 25, antiderivative size = 101 \[ \int (a+a \cos (c+d x))^{3/2} (A+B \cos (c+d x)) \, dx=\frac {8 a^2 (5 A+3 B) \sin (c+d x)}{15 d \sqrt {a+a \cos (c+d x)}}+\frac {2 a (5 A+3 B) \sqrt {a+a \cos (c+d x)} \sin (c+d x)}{15 d}+\frac {2 B (a+a \cos (c+d x))^{3/2} \sin (c+d x)}{5 d} \]

[Out]

2/5*B*(a+a*cos(d*x+c))^(3/2)*sin(d*x+c)/d+8/15*a^2*(5*A+3*B)*sin(d*x+c)/d/(a+a*cos(d*x+c))^(1/2)+2/15*a*(5*A+3
*B)*sin(d*x+c)*(a+a*cos(d*x+c))^(1/2)/d

Rubi [A] (verified)

Time = 0.10 (sec) , antiderivative size = 101, normalized size of antiderivative = 1.00, number of steps used = 3, number of rules used = 3, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.120, Rules used = {2830, 2726, 2725} \[ \int (a+a \cos (c+d x))^{3/2} (A+B \cos (c+d x)) \, dx=\frac {8 a^2 (5 A+3 B) \sin (c+d x)}{15 d \sqrt {a \cos (c+d x)+a}}+\frac {2 a (5 A+3 B) \sin (c+d x) \sqrt {a \cos (c+d x)+a}}{15 d}+\frac {2 B \sin (c+d x) (a \cos (c+d x)+a)^{3/2}}{5 d} \]

[In]

Int[(a + a*Cos[c + d*x])^(3/2)*(A + B*Cos[c + d*x]),x]

[Out]

(8*a^2*(5*A + 3*B)*Sin[c + d*x])/(15*d*Sqrt[a + a*Cos[c + d*x]]) + (2*a*(5*A + 3*B)*Sqrt[a + a*Cos[c + d*x]]*S
in[c + d*x])/(15*d) + (2*B*(a + a*Cos[c + d*x])^(3/2)*Sin[c + d*x])/(5*d)

Rule 2725

Int[Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[-2*b*(Cos[c + d*x]/(d*Sqrt[a + b*Sin[c + d*x
]])), x] /; FreeQ[{a, b, c, d}, x] && EqQ[a^2 - b^2, 0]

Rule 2726

Int[((a_) + (b_.)*sin[(c_.) + (d_.)*(x_)])^(n_), x_Symbol] :> Simp[(-b)*Cos[c + d*x]*((a + b*Sin[c + d*x])^(n
- 1)/(d*n)), x] + Dist[a*((2*n - 1)/n), Int[(a + b*Sin[c + d*x])^(n - 1), x], x] /; FreeQ[{a, b, c, d}, x] &&
EqQ[a^2 - b^2, 0] && IGtQ[n - 1/2, 0]

Rule 2830

Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)]), x_Symbol] :> Simp[(-d
)*Cos[e + f*x]*((a + b*Sin[e + f*x])^m/(f*(m + 1))), x] + Dist[(a*d*m + b*c*(m + 1))/(b*(m + 1)), Int[(a + b*S
in[e + f*x])^m, x], x] /; FreeQ[{a, b, c, d, e, f, m}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] &&  !LtQ[m
, -2^(-1)]

Rubi steps \begin{align*} \text {integral}& = \frac {2 B (a+a \cos (c+d x))^{3/2} \sin (c+d x)}{5 d}+\frac {1}{5} (5 A+3 B) \int (a+a \cos (c+d x))^{3/2} \, dx \\ & = \frac {2 a (5 A+3 B) \sqrt {a+a \cos (c+d x)} \sin (c+d x)}{15 d}+\frac {2 B (a+a \cos (c+d x))^{3/2} \sin (c+d x)}{5 d}+\frac {1}{15} (4 a (5 A+3 B)) \int \sqrt {a+a \cos (c+d x)} \, dx \\ & = \frac {8 a^2 (5 A+3 B) \sin (c+d x)}{15 d \sqrt {a+a \cos (c+d x)}}+\frac {2 a (5 A+3 B) \sqrt {a+a \cos (c+d x)} \sin (c+d x)}{15 d}+\frac {2 B (a+a \cos (c+d x))^{3/2} \sin (c+d x)}{5 d} \\ \end{align*}

Mathematica [A] (verified)

Time = 0.13 (sec) , antiderivative size = 65, normalized size of antiderivative = 0.64 \[ \int (a+a \cos (c+d x))^{3/2} (A+B \cos (c+d x)) \, dx=\frac {a \sqrt {a (1+\cos (c+d x))} (50 A+39 B+2 (5 A+9 B) \cos (c+d x)+3 B \cos (2 (c+d x))) \tan \left (\frac {1}{2} (c+d x)\right )}{15 d} \]

[In]

Integrate[(a + a*Cos[c + d*x])^(3/2)*(A + B*Cos[c + d*x]),x]

[Out]

(a*Sqrt[a*(1 + Cos[c + d*x])]*(50*A + 39*B + 2*(5*A + 9*B)*Cos[c + d*x] + 3*B*Cos[2*(c + d*x)])*Tan[(c + d*x)/
2])/(15*d)

Maple [A] (verified)

Time = 2.50 (sec) , antiderivative size = 85, normalized size of antiderivative = 0.84

method result size
default \(\frac {4 \cos \left (\frac {d x}{2}+\frac {c}{2}\right ) a^{2} \sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \left (6 B \left (\sin ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+\left (-5 A -15 B \right ) \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+15 A +15 B \right ) \sqrt {2}}{15 \sqrt {a \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}\, d}\) \(85\)
parts \(\frac {4 A \,a^{2} \cos \left (\frac {d x}{2}+\frac {c}{2}\right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )+2\right ) \sqrt {2}}{3 \sqrt {a \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}\, d}+\frac {4 B \cos \left (\frac {d x}{2}+\frac {c}{2}\right ) a^{2} \sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \left (2 \left (\cos ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )+2\right ) \sqrt {2}}{5 \sqrt {a \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}\, d}\) \(131\)

[In]

int((a+cos(d*x+c)*a)^(3/2)*(A+B*cos(d*x+c)),x,method=_RETURNVERBOSE)

[Out]

4/15*cos(1/2*d*x+1/2*c)*a^2*sin(1/2*d*x+1/2*c)*(6*B*sin(1/2*d*x+1/2*c)^4+(-5*A-15*B)*sin(1/2*d*x+1/2*c)^2+15*A
+15*B)*2^(1/2)/(a*cos(1/2*d*x+1/2*c)^2)^(1/2)/d

Fricas [A] (verification not implemented)

none

Time = 0.31 (sec) , antiderivative size = 69, normalized size of antiderivative = 0.68 \[ \int (a+a \cos (c+d x))^{3/2} (A+B \cos (c+d x)) \, dx=\frac {2 \, {\left (3 \, B a \cos \left (d x + c\right )^{2} + {\left (5 \, A + 9 \, B\right )} a \cos \left (d x + c\right ) + {\left (25 \, A + 18 \, B\right )} a\right )} \sqrt {a \cos \left (d x + c\right ) + a} \sin \left (d x + c\right )}{15 \, {\left (d \cos \left (d x + c\right ) + d\right )}} \]

[In]

integrate((a+a*cos(d*x+c))^(3/2)*(A+B*cos(d*x+c)),x, algorithm="fricas")

[Out]

2/15*(3*B*a*cos(d*x + c)^2 + (5*A + 9*B)*a*cos(d*x + c) + (25*A + 18*B)*a)*sqrt(a*cos(d*x + c) + a)*sin(d*x +
c)/(d*cos(d*x + c) + d)

Sympy [F]

\[ \int (a+a \cos (c+d x))^{3/2} (A+B \cos (c+d x)) \, dx=\int \left (a \left (\cos {\left (c + d x \right )} + 1\right )\right )^{\frac {3}{2}} \left (A + B \cos {\left (c + d x \right )}\right )\, dx \]

[In]

integrate((a+a*cos(d*x+c))**(3/2)*(A+B*cos(d*x+c)),x)

[Out]

Integral((a*(cos(c + d*x) + 1))**(3/2)*(A + B*cos(c + d*x)), x)

Maxima [A] (verification not implemented)

none

Time = 0.37 (sec) , antiderivative size = 93, normalized size of antiderivative = 0.92 \[ \int (a+a \cos (c+d x))^{3/2} (A+B \cos (c+d x)) \, dx=\frac {10 \, {\left (\sqrt {2} a \sin \left (\frac {3}{2} \, d x + \frac {3}{2} \, c\right ) + 9 \, \sqrt {2} a \sin \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )\right )} A \sqrt {a} + 3 \, {\left (\sqrt {2} a \sin \left (\frac {5}{2} \, d x + \frac {5}{2} \, c\right ) + 5 \, \sqrt {2} a \sin \left (\frac {3}{2} \, d x + \frac {3}{2} \, c\right ) + 20 \, \sqrt {2} a \sin \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )\right )} B \sqrt {a}}{30 \, d} \]

[In]

integrate((a+a*cos(d*x+c))^(3/2)*(A+B*cos(d*x+c)),x, algorithm="maxima")

[Out]

1/30*(10*(sqrt(2)*a*sin(3/2*d*x + 3/2*c) + 9*sqrt(2)*a*sin(1/2*d*x + 1/2*c))*A*sqrt(a) + 3*(sqrt(2)*a*sin(5/2*
d*x + 5/2*c) + 5*sqrt(2)*a*sin(3/2*d*x + 3/2*c) + 20*sqrt(2)*a*sin(1/2*d*x + 1/2*c))*B*sqrt(a))/d

Giac [A] (verification not implemented)

none

Time = 0.36 (sec) , antiderivative size = 115, normalized size of antiderivative = 1.14 \[ \int (a+a \cos (c+d x))^{3/2} (A+B \cos (c+d x)) \, dx=\frac {\sqrt {2} {\left (3 \, B a \mathrm {sgn}\left (\cos \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )\right ) \sin \left (\frac {5}{2} \, d x + \frac {5}{2} \, c\right ) + 5 \, {\left (2 \, A a \mathrm {sgn}\left (\cos \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )\right ) + 3 \, B a \mathrm {sgn}\left (\cos \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )\right )\right )} \sin \left (\frac {3}{2} \, d x + \frac {3}{2} \, c\right ) + 30 \, {\left (3 \, A a \mathrm {sgn}\left (\cos \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )\right ) + 2 \, B a \mathrm {sgn}\left (\cos \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )\right )\right )} \sin \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )\right )} \sqrt {a}}{30 \, d} \]

[In]

integrate((a+a*cos(d*x+c))^(3/2)*(A+B*cos(d*x+c)),x, algorithm="giac")

[Out]

1/30*sqrt(2)*(3*B*a*sgn(cos(1/2*d*x + 1/2*c))*sin(5/2*d*x + 5/2*c) + 5*(2*A*a*sgn(cos(1/2*d*x + 1/2*c)) + 3*B*
a*sgn(cos(1/2*d*x + 1/2*c)))*sin(3/2*d*x + 3/2*c) + 30*(3*A*a*sgn(cos(1/2*d*x + 1/2*c)) + 2*B*a*sgn(cos(1/2*d*
x + 1/2*c)))*sin(1/2*d*x + 1/2*c))*sqrt(a)/d

Mupad [F(-1)]

Timed out. \[ \int (a+a \cos (c+d x))^{3/2} (A+B \cos (c+d x)) \, dx=\int \left (A+B\,\cos \left (c+d\,x\right )\right )\,{\left (a+a\,\cos \left (c+d\,x\right )\right )}^{3/2} \,d x \]

[In]

int((A + B*cos(c + d*x))*(a + a*cos(c + d*x))^(3/2),x)

[Out]

int((A + B*cos(c + d*x))*(a + a*cos(c + d*x))^(3/2), x)